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Abstract

Purpose – This research aims to develop an effective and efficient algorithm for solving the curve
fitting problem arising in automated manufacturing systems.

Design/methodology/approach – This paper takes curve fitting as an optimization problem of a
set of data points. Expressing the data as a function will be very effective to the data analysis and
application. This paper will develop the stochastic optimization method to apply to curve fitting. The
proposed method is a combination optimization method based on pattern search (PS) and simulated
annealing algorithm (SA).

Findings – The proposed method is used to solve a nonlinear optimization problem and then to
implement it to solve three circular arc-fitting problems of curve fitting. Based on the analysis
performed in the experimental study, the proposed algorithm has been found to be suitable for curve
fitting.

Practical implications – Curve fitting is one of the basic form errors encountered in circular
features. The proposed algorithm is tested and implemented by using nonlinear problem and circular
data to determine the circular parameters.

Originality/value – The developed machine vision-based approach can be an online tool for
measurement of circular components in automated manufacturing systems.

Keywords Automation, Manufacturing systems, Optimization techniques, Algorithmic languages

Paper type Research paper

Introduction
The automatic interpretation and acquisition of the information of product features is
an important procedure in automated manufacturing systems. With the increasing
demand for manufacturing automation, curve fitting receives considerable attention
because it plays a key role in computer vision, reverse engineering, rapid prototyping,
computer simulation, etc. (Chan et al., 2002; Luo et al., 2003; Xiyu et al., 2003). The
advantages of using such automatic systems include a decrease in the time required for
measurement as well as the greater accuracy of measurement and better flexibility
than the conventional method (Chen et al., 1999; Tseng, 2006). The machine vision
techniques for inspection are gaining recognition as the trend in industry. It can
provide a non-contract measurement process of 100 percent inspection for measuring
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a wide class of objects in small-batch and mass production. The study of effective
algorithms specific to manufactured parts and form fitting becomes imperative in
vision-based inspection.

Curve fitting is the process of provided data set in approaching to a function.
Expressing the data as function will be very effective to the data analysis and
application. In the automated manufacturing systems, curve fitting is combined with
the analysis in common use or engineering technology, such as system simulation,
forecast modeling and image analysis, etc. to be applied to the solution of the
production-related problem.

The purpose of curve fitting is to select function parameter value to minimize the total
error sum of a set of data points that is taken into consideration. Once the function forming
and error representation method is determined, curve fitting will be the optimization
problem of a set of data points. Although least squares method is usually used in curve
fitting, the solution obtained does not often have the least error (Shunmugan, 1986). So this
current paper proposes to apply an optimization method to the complicated curve-fitting
problem. This method does not need the differential data of the function.

The curve fitting proposed in this current paper is a stochastic optimization method.
This method is the combination of pattern search (PS) and simulated annealing
algorithm (SA) and is named PSSA. PS is an effective optimization method, and has
been successfully applied to the nonlinear programming problem. SA was developed
into an effective optimization technology recently, and has been proved to have the
capability of jumping out local optimum, but SA needs a considerable quantity of
calculation demand. To improve SA efficiency in problem solving, the PSSA proposed
in this paper will take PS as the search move function of SA.

The remainder of this paper is organized as follows: next section provides
mathematical models of least squares circle for circle fitting; in the following section
presents the proposed PSSA optimization method of curve fitting; fourth section shows
a test example and an actual example of circle fitting; and final section gives the
conclusion.

Least squares circle
Form fitting algorithms have become increasingly important in modern dimensional
measurement systems. This is particular true for vision-based inspection systems
(Chen et al., 1999; Hopp, 1993). The algorithms for form fitting which convert measured
data to the reference geometry can be major source of error in a measurement system.
Form fitting can be viewed as an optimization problem in finding the parameters of
reference geometry that minimizes a particular fitting objective for a set of points (Yue
et al., 1999). The traditional instruments for circle fitting generally apply the least
squares technique to evaluate the fitting errors from measured points.

The least squares circle is the circle chosen so that the sum of the squares of the
radial distance of all data points from the fitting circle is a minimum. Given a set of
data points in two dimensions P ¼ {pi ¼ (xi, yi), i ¼ 1, 2, . . . n} which represents the
profile of a workpiece, it is possible to find explicitly the circle parameters by
minimizing the least square errors between the given set of data points and the curve
(Thomas and Chan, 1989). The least squares circle is the most widely used reference
circle for the assessment of form errors (Coope, 1993; Gander et al., 1994; Thomas and
Chan, 1989) due to its computational simplicity.

Simulated
annealing
approach

203



Let (xi, yi), i ¼ 1, 2, . . . n, be the coordinate measurements of n points from a circle of
center (xc, yc) and radius r, because of measurement errors and other factors, the
requirement of circle fitting is to find the best estimate of xc, yc and r from (xi, yi).
Suppose two dimension circle placed in the xy-plane may be written as:

f ðx; yÞ ¼ ðx 2 xcÞ
2 þ ð y 2 ycÞ

2 2 r 2 ¼ 0: ð1Þ

The normal deviation error (ei) between a data point (xi, yi) and the circle of radius r and
center (xc, yc) is given by:

ei ¼ ½ðxi 2 xcÞ
2 þ ðyi 2 ycÞ

2�1=2 2 r: ð2Þ

Most literatures about the least squares fitting of circle (Chan et al., 2002, 2000; Chan
and Thomas, 1997; Kim and Kim, 1996) for selecting the circle parameters xc, yc, r have
been concerned with the squares sum of geometric distances:

Ms ¼
Xn

i¼1

{½ðxi 2 xcÞ
2 þ ð yi 2 ycÞ

2�1=2 2 r}2: ð3Þ

Several iterative solutions are available in the literature (Ahn et al., 2001; Chan et al.,
2002, 2000; Joseph, 1994; Thomas and Chan, 1989) so as to minimize the function:

Mc ¼
Xn

i¼1

{ðxi 2 xcÞ
2 þ ð yi 2 ycÞ

2 2 r 2}2: ð4Þ

The result is a closed form solution for the parameters xc, yc, r. Another linear estimator
(Chan et al., 2000; Coope, 1993; Kim and Kim, 1996; Thomas and Chan, 1989) comes
from the rearrangement of Equation (4) to give:

Ml ¼
Xn

i¼1

x2
i þ y2

i 2 2xixc þ 2yiyc þ r 2 2 x2
c 2 y2

c

� �� �2
: ð5Þ

By treating xc, yc and r 2 2 x2
c 2 y2

c as the three unknowns, a simple least square
minimizing of Equation (5) gives a closed form estimation of the circle parameters.

Determining the circle of best fit to a set of point in the plane is an important problem
(Coope, 1993; Kim and Kim, 1996). An unbiased iterative method for obtaining a least
squares fit of a circular arc has been described (Chan et al., 2000; Joseph, 1994). Chan and
Thomas (1997) have proposed an approximate maximum likelihood linear estimator of
circle parameters. Chan et al. (2000) presented two algorithms, one iterative and another has
a closed form solution, providing unbiased and reliable estimates of the circle parameters
for noisy measurements on arcs. Chan et al. (2002) proposed an estimation scheme for the
circle parameters by first computing different centers from all combinations.

Optimization method of curve fitting
In this section, the solving method of curve fitting optimization model is developed.
The optimization method proposed in this paper combines the SA and PS method. SA
is able to effectively jump out local optimum and try to search global optimum, but if
the search frequency is taken into consideration, SA needs very large amount of search
frequency and causes the lack in efficiency. PS is very effective in solving nonlinear
programming problem (Ignizio, 1976), but PS also tends to have convergence at the
local optimum. This PSSA optimization method makes SA more effective in problem
solving. Therefore, PS is used as the search move function to avoid PS converging at
the inferior local optimum and to let PSSA become the stochastic optimization method.

JMTM
18,2

204



Simulated annealing algorithm
SA (Kirkpatrick et al., 1983; Metropolis et al., 1953) is a stochastic search technique. It is
designed to lead jumping out local optimum during the search process. SA is a very
effective combinatorial optimization method, which is successfully applied to VLSI
design, schedule, plant layout and, etc. and the combinatorial optimization problem
related to production (Collins et al., 1988) while extending its application to the
continuous variable optimization problem (Corana et al., 1987).

Similar to statistics mechanism, the search process of SA is also operated in
accordance with transition probability. This transition probability depends on control
temperature and the changing amount of objective function. Since, SA possesses
stochastic search policy, it can be “uphill” move by using the solution of a larger
objective function as the present solution. Moving the present solution to an inferior
solution under a controlled probability may allow SA jump out local optimum and may
be a better “downhill” path will be found, which further obtains a better solution. The
“uphill” move is controlled carefully by the temperature. When temperature is too high,
“uphill” move probability will increase; when temperature decreases gradually, “uphill”
move probability will decrease accordingly. Kirkpatrick et al. (1983) demonstrated that
SA is capable of obtaining the real optimum under a very long search time. In actual
execution, this real optimum is not obtainable due to the restriction of calculation time,
but an approximation of the real optimum can be obtained.

When SA is applied to one problem, four basic components should be defined
(Rutenbar, 1989). These are:

. Configuration. represents the possible solution of problem.

. Move set. Is an allowable move, which can let us achieve all feasible
configuration, this set have to be easy for calculation.

. Cost function. Is used to measure the quality of configuration.

. Cooling schedule. Sets the initial temperature and the cooling regulation to
determine when and how many degrees to decrease the present temperature, and
when to end the annealing.

The SA method that solves the continuous function problem proposed by Corana et al.
(1987) faces a tough problem that needs long copious calculations. The curve fitting
optimization model mentioned in the previous section is immense and complicated. The
method mentioned by Corana et al. is not suitable to apply to the optimization model
solving. So to decrease the SA calculation demand, the PSSA optimization method
proposed in this current paper uses PS as the move generating function to accelerate
search process.

Pattern search
The PSSA optimization method recommended in this paper uses PS (Hooke and Jeeves,
1961) as move generation mechanism. The operation of PS includes two kinds of move:
exploratory move and pattern move. Exploratory move examines the local behavior of
function, and finds out the direction of “downhill” path. Pattern move utilizes the
information generated by exploratory move to reach the valley rapidly.

Exploratory move starts searching from initial point and moves along the axial
direction of each variable according to step size, and decides whether neighboring
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move is set as present solution in accordance with objective function. If setting
neighboring solution as present solution is unacceptable (no improvement in objective
function), it will search the opposite direction. During exploratory move, each move
only refers to one variable, and explores each variable in proper order to check whether
there is improvement in the objective function. If there is an improvement, it means
that a direction of “downhill” path (or pattern direction) exists. After an exploratory
move ends, it will check whether a pattern direction exists. If it does exist, make the
pattern move according to this pattern direction, and this move can rapidly reach the
minimum of the function (the valley) and continue executing the pattern move until no
objective function improves anymore.

Changing step size or not depends on pattern move existence after each exploratory
move ends. If a pattern direction does not exist, then change the step size. PS uses
exploratory move and pattern move repeatedly until the result condition is satisfied.

PSSA optimization algorithm
As mentioned above, when the SA approach is applied to the optimization problems
with continuous variables, it encounters a serious problem of huge computational
requirements. Therefore, the PS algorithm is incorporated into the SA algorithm as the
move generation mechanism to improve the efficiency of optimization procedure.
An application of the SA approach needs first to define four basic components of the
algorithm. The four basic components in the proposed PSSA optimization algorithm
are stated as follows:

(1) Configuration. A legal configuration is the parameter combination of curve
fitting optimization model S.

(2) Move set. All curve parameter combination generated by PS are the element of
move set. The search move set of PSSA optimization method proposed in this
paper is determined by PS, and PS also decides and adjusts the step size of
optimization process and search direction.

(3) Cost function. Objective function is the expression of curve fitting error.

(4) Cooling schedule. The geometric cooling schedule (Collins et al., 1988) is adopted
here.

This method uses G ¼ c £ G mode to cool down after M times of move, where G is the
present control temperature, c is the cooling ratio, and 0 , c , 1, that is one cycle.
When there is still no present optimum change condition in K times of cycle
continuously, the annealing is regarded as frozen and at this moment, the search will
stop. There are many cooling schedules discussed in the literature (Van Laarhoven and
Aarts, 1987), and geometric cooling schedule is very fast and very effective (Jeffcoat
and Bulfin, 1993). Therefore, this study adopts geometric cooling schedule to decrease
the calculation demand.

The definition of symbol used in PSSA optimization method developed in this paper
is listed below:

. M: number of variables

. S ¼ {S1, S2, . . . S m}: parameter combination

. S 0 ¼ S0
1; S

0
2; . . . ; S

0
m

n o
: initial solution
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. S: neighboring solution of S

. U ¼ {u 1, u 2, . . . u m}: step size vector

. U 0 ¼ U 0
1;U

0
2; . . . ;U

0
m

n o
: initial step size vector

. DS ¼ {Ds1, Ds2, . . . Dsm}: pattern direction vector

. F(S): objective function value

. DE ¼ F(S0)-F(S): change quantity of objective function value

. nI: a counter for number of step size increment

. rI: step size increasing rate, rI . 1

. I: maximum number of step size increment allowed

. nD: a counter for number of step size decrement

. rD: step size decreasing rate, 0 , rD , 1

. nM: a counter for number of search points at a temperature level

. M: specified number of search points at a temperature level

. nk: a counter for checking frozen state achieved

. K: specified maximum number of nk

. Go: the initial control temperature

. G: the control temperature

. C: cooling ratio, 0 , c , 1

The algorithm is listed below:

Step 1. (Initialize the search procedure)

(a) Get an initial solution S 0, an initial control temperature Go and initial step
sizes U 0.

(b) set S ¼ S 0, U ¼ U 0, G ¼ Go, nk ¼ 0, nM ¼ 0, nI ¼ 0, nD ¼ 0, imp ¼ 0,
frozen ¼ 0, evaluate F(S).

Step 2. (Exploratory move) Set DS ¼ 0, S0 ¼ S,

For j ¼ 1 to m

(a) set s0j ¼ sj þ uj, DE ¼ F (S0) 2 F(S)

If DE , 0 (downhill move), set S ¼ S0 Dsj ¼ uj, imp ¼ 1.

(b) If DE $ 0 (uphill move), set S ¼ S0 Dsj ¼ uj,

imp ¼ 1 with probability e 2DE/G

(c) Perform sub-procedure CHECK.

If frozen ¼ 1, go to Step 5.

(d) If Dsj ¼ 0, set s0j ¼ sj 2 uj, DE ¼ F(S0) 2 F(S).

Otherwise, return to (a).

(e) If DE , 0 (downhill move), set S ¼ S0 Dsj ¼ 2uj, imp ¼ 1.

(f) If DE $ 0 (uphill move), set S ¼ S0 Dsj ¼ 2uj,

imp ¼ 1 with probability e 2DE/G.
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(g) Perform sub-procedure CHECK.

If frozen ¼ 1, go to Step 5.

Next j.

Step 3. (Check pattern direction found and adjust step sizes)

(a) If DS – 0, go to Step 4.

(b) If nI % I, set nI ¼ nI þ 1,

set U ¼ ðrIÞ
nI £ U 0 (increase step sizes).

Go to Step 2.

Otherwise, set nD ¼ nD þ 1,

set U ¼ ðrDÞ
nD £ U 0 (decrease step sizes).

Go to Step 2.

Step 4. (Pattern move)

(a) set S0 ¼ S þ DS, DE ¼ F(S0)–F(S)

(b) If DE , 0 (downhill move), set S ¼ S0 imp ¼ 1, go to (d).

(c) IfDE $ 0 (uphill move), set S ¼ S0,

imp ¼ 1 with probability e 2DE/G

(d) Perform sub-procedure CHECK.

(e) If frozen ¼ 1, go to Step 5.

(f) If S ¼ S0 return to (a) (continue pattern move).

Otherwise, return to Step 2 with S.

Step 5. (Termination)

Return S and terminate search.

Sub-procedure check (Check improvement and lower control temperature)

Step 1. Set nM ¼ nM þ 1

If nM ¼ M, go to Step 2.

Otherwise, go to Step 4.

Step 2. (Check improvement during M moves) Set nM ¼ 0.

If imp ¼ 1, (current best solution improved)

set nk ¼ 0.

Otherwise, set nk ¼ nk þ 1,

If nk ¼ K, (frozen state achieved)

set frozen ¼ 1.

Otherwise, set frozen ¼ 0.

Step 3. (Lower control temperature)

Set G ¼ c £ G.

Step 4. Return
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Generally, the setting method of SA set parameter differs in accordance with different
application problem. In the PSSA search process, present optimum will move up and
down, so algorithm will remember the search point with the minimal objective
function. This PSSA optimization method possesses the following characteristics: the
ability to jump out local optimum; easy transformation into computer program;
management of curve fitting problem without strict assumption of the objective
function and parameter.

The proposed PSSA algorithm has several desirable characteristics, including the
ability to jump out local optimum, ease of implementation algorithmically, robustness
for dealing with complicated nonlinear problems, and no restrictive assumptions about
objective function, constraint set and parameter set. Based on the survey of Koulamas
et al. (1994), simulated annealing is a viable optimization method and is less sensitive to
the problem size. Generally, a large number of iterations yield the solution with a
higher probability of convergence to the optimum one. From the primary experiments,
the proposed algorithm can efficiently approach to the vicinity of the optimal solution.
In practice, if the PSSA process is not converged, it may restart the search procedure
by using a new random number sequence. This process can be repeated until the
objective is achieved.

Implementation and results
PSSA solving ability test
First, the proposed method PSSA was used to solve a nonlinear optimization problem
with many local optimums to test and prove its solving ability. This nonlinear
optimization problem is as follows:

Min x2
1 þ x2

2

� �
=22 cosð20px1Þcosð20px2Þþ 2 2 10 # X1 # 10 2 10 # X2 # 10 ð6Þ

This optimization problem has 40,000 local optimums, and its real optimum is on (0, 0),
the optimal value is 1. Yip and Pao (1995) had applied two kinds of genetic algorithm
(Goldberg, 1989) to solve this problem. One of them is simulated evolution (SE), while
the other method is the combination of genetic algorithm and SA, which is called
guided evolutionary simulated annealing (GESA) (Yip and Pao, 1994). Yip and Pao
used SE and GESA, respectively, to run the problem for 50 times. In each result,
66 percent of SE obtains the real optimum, 34 percent obtains approximated optimum
(function value 1.0025), 100 percent of GESA obtains the real optimum, but, SE and
GESA calculation demand is very large. The solution search points of each run are
800,000 points.

The test example is solved on an IBM PC 586 compatible computer using the C
programming language. The initial solution is randomly selected within the variable
bounds. The user-specified parameters for this ability test problem and actual example
of curve fitting are listed in Table I. The developed PSSA is used to run this problem for
50 times. The resulting 87 percent obtains the real optimum, 13 percent the
approximated optimum (1.0025); the average solution search point of each run is
27,118 points, which is only 3.4 percent of SE and GESA. Although PSSA solution
quality is inferior to GESA, its solution efficiency is far better than SE and GESA
(Table II). Johnson et al. (1989) had executed an experiment on SA with figure division
problem and found that not only the number of solution point was very large, but also the
solution obtained varied in large range. In this example, the solution variation obtained
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by PSSA is very small and is not affected by the different initial solution. From this
result, the solution efficiency of PSSA and the result reliability can be proved.

Actual example of curve fitting
As mentioned aforesaid, once the function form and error expression method are
decided, the curve fitting becomes the optimization problem of a set of data points.
This current study uses three arc functions to produce three groups of data points and
uses these three groups of data points to make the curve fitting of complete circle, 1/2
circular arc and 1/4 circular arc of different interval, and to prove the feasibility and
reliability of PSSA application on curve fitting problem. In this paper, error expression
method is the least square error. This optimization problem of least squares circle can
be expressed as:

Min FðsÞ¼
Xn

i¼1

ðxi2xcÞ
2þð yi2ycÞ

22r 2
� �2

xL#xc#xU yL#yc#yU 0#r#rU ð7Þ

where S ¼ {xc, yc, r} is the arc parameter, the decision variable of this problem, (xc, yc)
is the coordinate value of the center of circle, r is radius. F(S) is the objective function of
PSSA, (xi, yi) is the coordinate value of the i th point, n is the data point, xU, yU, rU are
the upper bound of xc, yc, r,, respectively, xL, yL, 0 are the lower bound of xc, yc, r,,
respectively. In the actual application, arc parameters often present in a certain
interval, so the upper and lower bound are set. In this paper, the upper bound and
lower bound of the center coordinate of circle are set at 500 and 500 separately, and the
largest value of radius is 500.

Three circular arcs are circle 1: center of circle (100, 220) and radius 10, circle 2:
center of circle (0, 0) and radius 100, circle 3: center of circle (210, 212) and radius 200,
respectively. Each group of data points is 1,000 points. The results of three arcs curve
fitting are listed in Tables III-V, respectively. All initial points are randomly selected

Symbol Value

I 5
rI 1.47
RD 0.77
M 30
K 50
Go 1000.0
C 0.95
U 0 (test example) {0.1, 0.1}
U 0 (actual example) {10.0, 10.0, 10.0}

Table I.
The setting values of
PSSA

PSSA SE GESA

Run times 50 50 50
Real optimum obtained (percent) 87 66 100
Approximated optimum 1.0025 1.0025 1.0025
Solution search points 27,118 800,000 800,000

Table II.
Comparison of PSSA to
SE and GESA
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within the variable bounds. The user-specified parameters for this actual example of
curve fitting are listed in Table I. The average CPU time of each group only
0.3 seconds.

Table III shows that the 1/4 circular arc of interval [p, 3p/2] obtains the
approximated optimum (0.009) and the others obtain the real optimum. Table IV shows
that the 1/4 circular arc of interval [p/4, 3p/4] and [p, 3p/2] obtain the approximated
optimum (0.124 and 0.107) and the others obtain the real optimum. Table V shows that
the 1/2 circular arc of interval [p/2, 3p/2] obtain the approximated optimum (0.071) and
two intervals of 1/4 circular arc obtain the approximated optimum and the others
obtain the real optimum. Calculation result shows that the solution obtained by PSSA
are excellent.

The result shows that PSSA can be effectively applied to the curve fitting of image
data. This PSSA is able to obtain the approximated optimum through reasonable
search frequency and has the ability to jump out local optimum. This method has
consistency and the solution obtained is not sensitive to the initial solution. This PSSA
method is the optimization method in common use, and can be easily modified to apply
to different curve fitting optimization model, such as model with different error
expression.

Conclusions
This study has successfully presented an optimization algorithm based on the PS and
the simulated annealing algorithm (PSSA), which is applicable to complicated curve
fitting problem. Curve fitting is one of the basic form errors encountered in circular
features. In this paper, the mathematical programming models for least squares circle
and a stochastic optimization method have been demonstrated to determine the
circular parameters. The proposed PSSA algorithm is tested and implemented by
using nonlinear problem and circular data. Based on the analysis performed in the
experimental study, the proposed PSSA algorithm has been found to be suitable for
curve fitting. The developed machine vision-based approach can be an online tool
for measurement of circular components in automated manufacturing systems.
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